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Abstract

In the estimation of proportions by pooled testing, the MLE is biased, and several methods of 

correcting the bias have been presented in previous studies. We propose a new estimator based on 

the bias correction method introduced by Firth (Biometrika 80:27–38, 1993), which uses a 

modification of the score function, and we provide an easily computable, Newton–Raphson 

iterative formula for its computation. Our proposed estimator is almost unbiased across a range of 

problems, and superior to existing methods. We show that for equal pool sizes the new estimator is 

equivalent to the estimator proposed by Burrows (Phytopathology 77:363–365, 1987). The 

performance of our estimator is examined using pooled testing problems encountered in plant 

disease assessment and prevalence estimation of mosquito-borne viruses.
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1. INTRODUCTION

Pooled testing (also known as group testing) occurs when individuals from a population are 

pooled together and tested as a group for the presence of an attribute, usually a pathogen. 

Since its introduction to the statistical literature by Dorfman (1943), pooled testing has been 

applied to a diverse array of fields, including seed health assays (Liu et al. 2011), HIV 

prevalence estimation (Hund and Pagano 2013), screening of mycobacteria in rodents 

(Durnez et al. 2008), and detection of genetically modified organisms (Yamamura and Hino 

2007). Two common areas of application, which correspond to the current authors’ 

involvement, are plant disease assessment (e.g., Freeman et al. 2013) and prevalence of 

viruses in mosquitoes which transmit them (e.g., Aranda et al. 2009).

Research in pooled testing diverges into two areas—classification, in which the purpose is to 

identify the positive units, and estimation, where the aim is to estimate the proportion of 

positives (p) in a population. The statistical issues are quite different, and the literature 

generally focuses on one or the other. Our concern is with estimation, because of the subject 

areas which have led to our interest in pooled testing. In plant disease assessment, estimating 

disease levels in a population such as a field crop, a glasshouse, or a plant production 

process, has far higher priority than identifying infected plants. With mosquito-borne 

HHS Public Access
Author manuscript
J Agric Biol Environ Stat. Author manuscript; available in PMC 2019 January 09.

Published in final edited form as:
J Agric Biol Environ Stat. 2017 December ; 22(4): 602–614. doi:10.1007/s13253-017-0297-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diseases, the aim is often to estimate the prevalence of virus infection in mosquitoes, which 

is used in a variety of ways in public health to aid control and prevention of human disease.

The maximum likelihood estimator (MLE) of p is (for a fixed sample size) positively biased, 

except in the trivial case of all pools consisting of one individual each. This bias, which can 

be severe, was recognized as an issue in early work on pooled testing (Thompson 1962), but 

point estimation has not generated as much interest as interval estimation. Some studies have 

simply encouraged better design of pooled testing procedures, with statements such as “the 

choice of experimental design is crucial to achieve negligible bias” (Schaarschmidt 2007). It 

is indeed the case that good planning can alleviate the problem to some extent. For example, 

Swallow (1985) produced tables showing the bias of the MLE for different numbers of pools 

and different pool sizes, and these have been used extensively by other studies, even recently 

(Ding and Xiong 2016). Hepworth and Watson (2009) showed that bias can be reduced by 

sequential testing with pools of decreasing size. But in many situations, a design (such as a 

testing plan with particular numbers of pools of a certain size) does not exist, or if it does, 

the process may not be able to be fully controlled. For example, the US Centers for Disease 

Control and Prevention may collect virus vector mosquitoes related to ongoing disease 

outbreaks or when conducting field-related experiments, and these samples are usually 

analyzed by trap location and collection date, so that pool sizes may not be predetermined, 

and pooling of individuals rarely results in equal-sized pools. An example of such a study is 

described by Godsey et al. (2005).

It is important that less biased alternatives to the MLE be available for the wide range of 

pooled testing scenarios that occur in practice. In this paper we describe estimators which 

are almost unbiased, and also have smaller mean squared error than the MLE. We first 

consider work that has already been done in this area, and then propose a new estimator 

based on the bias reduction method introduced by Firth (1993). We provide an easily 

computable, Newton–Raphson iterative formula for its computation. We show that Firth’s 

method is equivalent to that introduced by Burrows (1987) for pools of equal size. We then 

compare the new estimator with the bias-adjusted MLE resulting from the method described 

by Gart (1991), which has been previously shown to work well for pools of unequal size. 

These estimators are evaluated for a variety of pooled testing problems, chosen to reflect real 

situations encountered by the authors, in either plant disease assessment or mosquito-borne 

viruses.

2. BIAS CORRECTION OF THE MLE IN POOLED TESTING

Suppose that for i = 1,…, d, ni pools of size mi are tested, of which Xi = xi pools are 

positive. Assuming that the individuals in the pools follow i.i.d. Bernoulli distributions with 

parameter p, and that testing is conducted without error, the binomial parameters for the 

distribution of Xi are ni and 1 − (1 − p)mi, ni assumed fixed and known. The log-likelihood is 

therefore

l p; x =
i = 1

d
log

ni

xi
+

i = 1

d
xilog 1 − 1 − p

mi + log(1 − p)
i = 1

d
mi ni − xi (1)
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where x = (x1,…, xd). The MLE of p is the solution p to the score equation

S p = − 1
1 − p i = 1

d mixi

1 − 1 − p
mi

− mini = 0 (2)

which requires iteration except when all pools are of equal size m, in which case the MLE 

simplifies to p = 1 − 1 − x/n 1/m. A convenient, iterative formula for this solution is given in 

Walter et al. (1980).

Burrows (1987) derived a bias correction for equal pool sizes by writing the MLE as 

1 − y/n 1/m, where y = n − x is the number of negative pools. Beginning with 

y + a / n + b 1/m instead of the MLE, he found that the bias term of O(n−1) is eliminated 

when a = b = 1
2 m − 1 /m. This results in an estimator which can be expressed as either of the 

following:

p = 1 − n − x + a
n + a

1/m
= 1 − 2m n − x + m − 1

2mn + m − 1
1/m

. (3)

This estimator could be reasonably described as “the MLE with about a half an additional 

negative pool.” In calculations across a range of n, p, and m, Burrows found the bias of p to 

be less than about 5% of that of p, and the mean squared error (MSE) to be uniformly less 

than that of p.

Hepworth and Watson (2009) found the Burrows correction to be extremely effective in 

reducing bias for small p, and recommended p as an estimator when pool sizes are equal, 

describing it as “essentially unbiased for values of p consistent with the design of the 

procedure.” Hund and Pagano (2013) concurred, stating that “the Burrows estimator has 

negligible bias, even for sample sizes as small as 100.” Colon et al. (2001) pointed out that 

the Burrows estimator belongs to a class of shrinkage estimators which shrink the MLE 

toward zero. They examined in some detail the expansions used to derive it, and compared 

its bias and MSE properties with the MLE, the jackknife, and other shrinkage estimators. 

For small sample sizes (n < 20) they found the Burrows estimator to have the least bias, and 

for larger n, it tied for best with the jackknife. Asymptotically, they found that the Burrows 

estimator tends to overestimate p and the jackknife to underestimate it. However, “for large 

enough sample sizes the bias of the Burrows estimator is essentially zero” (Mitchell and 

Pagano 2012).

For equal pool sizes, therefore, the Burrows correction produces an estimator which, for all 

practical purposes, is effectively unbiased. This perhaps explains the lack of proposed 

alternatives, though there have been a few. One is the jackknife, mentioned above; another is 

an empirical Bayes estimator proposed by Bilder and Tebbs (2005), which gave much 

smaller bias and MSE than p, but not quite as small as p. Gildow et al. (2008) applied this 

estimator to the transmission of Cucumber mosaic virus by aphids in snap bean.
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The only serious competitor to the Burrows estimator is the general bias correction 

described by Gart (1991) for independent Xi and a single parameter, which matches the 

usual pooled testing framework we study here. Except for terms of O ni
−2 , the bias of the 

MLE is

b p =
2 ∂I

∂ p + 𝔼 ∂3l

∂ p3

2 I p 2 (4)

where I is the Fisher information. Using the fact that 𝔼 Xi = ni 1 − 1 − p
mi , it can be 

shown that

I p =
i = 1

d mi
2ni 1 − p

mi − 2

1 − 1 − p
mi

(5)

(Walter et al. 1980). The other terms in (4) were derived for pooled testing by Hepworth 

(2005), and lead to the following expression for the bias:

b p = 1
2 I p 2 i = 1

d mi
2 mi − 1 ni 1 − p

mi − 3

1 − 1 − p
mi

which provides an estimator

p̆ = p − b p

with the bias of O ni
−1  removed.

For equal pool sizes, Hepworth and Watson (2009) found Gart’s bias correction to be 

effective in reducing bias for small p, though not quite as good as Burrows’ correction. A 

situation in which either correction could have been usefully employed was in the testing of 

blood samples for HIV described by Brookmeyer (1999). Seven hundred individual samples 

were grouped into 7 pools of 100, and 4 of the pools tested positive, resulting in an MLE of 

p = 0.00844. At p = p, the MLE has a (relative) bias of 243%, the Burrows estimator has a 

bias of 0.43%, and the Gart correction gives a bias of −1.81%.

The Gart correction has the disadvantage of not providing a result when p = 1 due to I(p) 

being zero. For an extensive discussion of the problem of all positive pools in estimation of 

p, see Hepworth and Watson (2009).
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For unequal pool sizes, the Gart correction was also effective. However, their main 

evaluation involved only one pooled testing procedure, comprising 8 pools of 20 and 8 pools 

of 5. The context for that particular evaluation was the estimation of virus prevalence in a 

carnation population, from which 200 plants were sampled, and tested in pools using 

ELISA. In the present study we evaluate a range of pooled testing scenarios, including larger 

ones typical of the monitoring of mosquito-borne viruses. Hepworth and Watson (2009) also 

assessed Gart’s correction with sequential pooled testing procedures, and found that it 

effectively accounted for the positive bias, but created a negative bias of similar magnitude. 

Sequential procedures have their own distinctive characteristics, and we do not consider 

them further here.

Because of the effectiveness of the Burrows correction for equal pool sizes, an extension of 

it to unequal pool sizes is desirable. No extension or generalization has yet been derived, 

however, as even obtaining a = b = 1
2 m − 1 /m for equal pool sizes, with a closed-form 

expression for the estimator, is not trivial, and the unequal pool case appears intractable.

Hepworth and Watson (2009) made an attempt at a generalization by defining yi = ni −xi as 

the number of negative pools for i = 1,…,d, replacing yi in (,2) by yi + ai and ni by ni + bi, 

where ai = bi = 1
2 mi − 1 /m

i
, and iteratively solving (2). The result was an over-correction, 

with negative bias for all p, though it was less in absolute value than the positive bias of p. 

They also pointed out that there is no inherent reason why ai must equal bi, or why either 

quantity has to equal 1
2 mi − 1 /m

i
, and so a direct generalization remains elusive.

3. FIRTH’S BIAS CORRECTION OF THE MLE

Firth (1993) proposed a general bias correction to the MLE, which involves a modification 

to the estimating function. Instead of solving the usual score equation S(p) = 0, a solution is 

found to

S p − I p b p = 0. (6)

This removes bias of O ni
−1  and has the feature of being “preventative” rather than 

“corrective,” as Gart’s correction and jackknife methods are. This is an advantage when an 

estimate can be infinite, as has been seen in logistic regression (Heinze and Schemper 2002). 

Firth’s method has been applied widely; for example, with a single binomial observation, 1
2

is added to the number of positives and the number of negatives, which is not dissimilar 

from the Burrows correction for equal pool sizes. For pooled testing, we have derived 

expressions for S(p), I (p), and b(p), and so the numerical solutions to (6) are quite 

straightforward, though iterative. The resulting estimator, which is our proposed new 

estimator of p, therefore arises from applying Firth’s bias correction method to pooled 

testing.
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To solve Eq. (6), the Newton–Raphson method provides a convenient iterative scheme for 

implementation. For each distinct pool size i = 1, …, d, write the unique pool size 

contribution to the information as

vi p =
mi

2ni 1 − p
mi − 2

1 − 1 − p
mi

and set wi p = vi p /I p = vi p /
j = 1
d v j p . Note that i = 1

d wi = 1. Next compute

dvi(p)
dp = vi′(p) =

mi
2ni 1 − p

mi − 3

1 − 1 − p
mi

2 2 1 − 1 − p
mi − mi

and

dwi(p)
dp = wi′(p) =

vi′(p)
j = 1
d

v j(p) − vi(p)
j = 1
d

v j′ (p)

j = 1
d

v j(p)
2

Using expressions given, the Newton–Raphson recursion may therefore be derived as

pk + 1 = pk + i = 1

d
mixi

1 − 1 − pk
mi

− 1
2miwi pk − N − 1

2

i = 1

d

mi
2xi 1 − pk

mi − 1

1 − 1 − pk
mi

2 + 1
2miwi′ pk

with N = i = 1
d mini equal to the number of individuals. A starting value at k = 0 should be 

predetermined, and we have found it convenient to use the MLE computed using the 

proportion of positives pools and average pool size, as follows:

p0 = 1 − 1 −
i = 1

d
xi/ i = 1

d
ni

ini/N
.

Iteration proceeds until the change in successive iterates pk and pk+1 is less than some 

desired tolerance. For the case of all positive pools, the starting value for the iteration should 

be p0 = i = 1
d xi/N, the so-called minimum infection rate (MIR), as the preceding one is 0 in 
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this case, making the Newton–Raphson update undefined. As an alternative to this iterative 

scheme, commonly used statistical software often provides root-finding functionality.

For equal pool sizes, expressions S(p) and I (p) are (2) and (5), respectively, without the 

summations or subscripts, and the bias in Eq. (4) simplifies to

b(p) =
m − 1 1 − 1 − p m

2m2n 1 − p m − 1 .

Piecing these together, Eq. (6) then becomes

S(p) − I(p)b(p) = 1
1 − p

mx

1 − 1 − p m − mn − m − 1
2 1 − p = 0

which rearranges to

1 − p m = 2m n − x + m − 1
2mn + m − 1

whose solution for p is equivalent to the Burrows estimator given in (3). This shows that the 

Firth bias correction is equivalent to the Burrows bias correction for equal pool sizes, and so 

may be considered a natural extension of the Burrows estimator for unequal pool sizes.

4. COMPARISON OF BIAS-CORRECTED ESTIMATORS

4.1. SMALL-SIZED POOLED TESTING EXAMPLE

We now compare Gart’s and Firth’s bias correction methods in some detail using the pooled 

testing example described above. There were 200 individuals grouped into 8 pools of 20 and 

8 pools of 5, for which we adopt the notation N : mn = 200 : 58 208. It is useful to test the 

methods on a small example such as this, because we cannot rely on asymptotic properties 

to rescue them from poor performance. It is instructive first to examine the estimates 

themselves for a range of outcomes; these are presented in Table 1, with the outcomes 

selected to give a range of values of p. It is evident that Firth’s method makes a slightly 

smaller correction than Gart’s method.

For evaluation of the bias, there is not much to be gained by examining the entire range of p. 

A better approach, adopted by Hepworth and Watson (2009), is to concentrate on values of p 
consistent with the design of the procedure, i.e., values for which the probability of all 

positive groups is small, because this outcome is highly uninformative, and to be avoided if 

at all possible. We therefore let ψ be the value of p at which the probability of all positive 

groups is 0.05, and use ψ as an upper bound on p for purposes of evaluation. For this 

example, ψ = 0.211. Gart’s method does not produce an estimate for all positive groups, so 

it is necessary to allocate a value in an ad hoc way; we will use the Firth estimate. For small 

p the actual value chosen makes little difference, because the probability of all positives is 

negligible.
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Table 2 gives the expected value of the estimators corrected by either Gart’s or Firth’s 

method, together with the percentage bias and root mean squared error (RMSE), for selected 

values of p. The corresponding figures for the MLE are also shown. Both corrected 

estimators are close to unbiased, with less than 1% absolute bias for p < ψ. The bias is 

slightly negative for the Gart estimator, and mostly slightly positive for the Firth estimator. 

The RMSE is virtually identical for the two estimators, and here it essentially equals the 

standard deviation, due to the extremely small bias. Both estimators have smaller RMSE 

than the MLE, especially for larger p.

4.2. MEDIUM-SIZED POOLED TESTING EXAMPLE

We now consider a “medium-sized” example, representative of some procedures used by the 

CDC in assessing virus infection rates in mosquitoes. This example has 5 pools of 5, 5 pools 

of 10, 5 pools of 25, and 6 pools of 50, which we write N : mn = 500 : 55 105 255 506. Figure 

1 shows the bias and RMSE of both estimators, for p < ψ = 0.183. For p less than about 

0.05, the bias is extremely small for either, with the negative bias for the Gart estimator of 

about the same magnitude as the positive bias for the Firth estimator. For larger p, both 

estimators have negative bias, with Gart more negative. For this example, the Firth estimator 

is better overall, though the Gart estimator still has small bias, with the maximum absolute 

bias being 1.46% at p = ψ. The RMSE is virtually identical for the two methods, and less 

than the RMSE using the MLE (0.019 at p = 0.05, 0.193 at p = ψ).

Another medium-sized example is the problem described by Brookmeyer (1999), which we 

introduced in section 2; this can be written N : mn = 700 : 1007. We do not provide details of 

the bias here, but overall Firth’s estimator performs better than Gart’s. At p = ψ = 0.0105, 

the bias is 0.17% for Firth and −2.39% for Gart.

4.3. LARGE-SIZED POOLED TESTING EXAMPLES

We now consider a range of larger examples, with N = 500, 1000 or 5000, and between 1 

and 4 different pool sizes. Table 3 compares the Gart and Firth estimators for mean absolute 

percentage bias and RMSE, calculated over 100 equally spaced points in the interval 

[0.001,ψ ]. Also shown is the bias at p = ψ, where its maximum absolute value usually 

occurs over the range (0,ψ). Corresponding values for the MLE are not shown, as they 

always vastly exceed the values for the Gart and Firth estimators. Figure 2 plots the bias of 

both estimators for six of the procedures listed in Table 3, selected to show a range of N : mn 

and the resulting bias patterns. One of the plots arises from equal pool sizes, two of them 

from 2 pool sizes, two from 3 pool sizes, and one from 4.

Some trends emerge in these results. The most obvious and important is that, while the mean 

percentage (absolute) bias is small for both methods (generally < 1%), it is always smaller 

for Firth’s method than for Gart’s. The difference between the methods generally increases 

with pool size.

The “worst” bias (i.e., at the highest prevalence consistent with the testing procedure) is 

always much smaller for Firth’s method. It is always negative for Gart and usually positive 

for Firth. In percentage terms, the difference between the methods for worst bias decreases 

with increasing number of pools and increases with average pool size.
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The average RMSE is always very slightly larger for Firth’s method, but the difference is of 

not practical consequence. For either method, it is generally worse (around 0.03) for 

procedures involving small pool sizes. However, this is still only about half the 

corresponding RMSE for the MLE.

5. DISCUSSION

We have considered bias correction in estimation of proportions by pooled testing, in which 

the MLE is clearly unacceptably biased for routine applications. We have proposed a new 

estimator based on the general bias reduction method applied to MLEs described by Firth 

(1993), provided an easily computable formula for its iterative computation, and shown that 

it is better overall than the method described by Gart (1991). Firstly and most importantly, it 

results in less absolute bias in a wide range of pooled testing situations. But in addition, 

being based on a modification of the score function, it is preventative rather than corrective, 

thus avoiding problems relating to undefined parameter estimates. Finally, we have shown 

that for pools of equal size, Firth’s method is equivalent to the method introduced by 

Burrows (1987), which is generally viewed as the best estimator available.

Firth’s method has been applied to a range of estimation problems. One study of interest in 

the current context is that of Mehrabi and Matthews (1995), who applied it to estimating the 

most probable number (the MLE) in dilution assays. Hepworth (1996) pointed out the strong 

parallel between pooled testing and dilution assays, especially when pools are of unequal 

size. Mehrabi and Matthews recommended Firth’s method, especially with the possibility of 

an infinite estimate. A close second was a “simple bias-corrected estimator,” which was an 

adjustment to the MLE based on Gart’s method.

Ding and Xiong (2016) proposed a new estimator for the case of equal pool sizes based on a 

weighted combination of order statistics. They showed by simulation that it was almost 

unbiased in most cases they considered, and claimed it to be at least as good as the Burrows 

estimate. This therefore provides a comparison of their proposed estimator with the Firth-

adjusted estimator we propose, since for equal pool sizes Burrows and Firth agree.

If MSE or RMSE (which is composed largely of variance here) was used as the main 

criterion for choosing an estimator, we might place the Gart and Firth methods on an equal 

footing. As Firth (1993) states, “the merits of bias reduction in any particular problem will 

depend on a number of factors.” But given that the RMSE associated with the two methods 

is very similar, and much less than that of the MLE, the smaller bias of the Firth estimator 

gives it an advantage. This is likely to be particularly true for practitioners using pooled 

testing, whose disposition is often to prefer an unbiased estimator, even at the expense of a 

mild increase in variance.

We have assumed in this study that positive and negative bias are of equal detriment to an 

estimator. The fact that the corrected estimator has negative bias for Gart’s method (i.e., it is 

a slight over-correction) and generally positive bias for Firth’s method has therefore not 

been a consideration in recommending the Firth method.
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Computation is not a major issue in deciding on an appropriate estimator. Estimation of p 
generally requires iteration when pools are of unequal size, even if there is no bias 

correction. In our computations, some of the bias calculations took considerable computing 

time when there were a large number of outcomes, e.g., N : mn = 1000 : 510 1010 2510 5012, 

for which there are 17303 outcomes. If the number of different group sizes was large, this 

was accentuated. However, the computation of the estimates themselves took very little time, 

and so provided a practitioner has access to statistical software, bias-corrected estimates can 

be found readily. R code to implement the methods in this paper is available from the 

authors, and for Firth’s estimator, R code implementing the Newton–Raphson iteration is 

provided in an online supplement accompanying the article at the journal’s website.
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Figure 1. 
Bias and root mean squared error of estimators corrected by either Gart’s or Firth’s method, 

for pooled testing with N : mn = 500 : 55 105 255 506. Gart= broken line, Firth = unbroken 
line.
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Figure 2. 
Bias of estimators over p <ψ corrected by either Gart’s or Firth’s method, for a range of 

pooled testing procedures. Gart = broken line, Firth = unbroken line.

Hepworth and Biggerstaff Page 13

J Agric Biol Environ Stat. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hepworth and Biggerstaff Page 14

Table 1.

Estimates of p from the Gart and Firth bias correction methods, for selected outcomes of a procedure testing 8 

pools of 20 and 8 pools of 5.

Number of positive groups (x1, x2)

Method (1, 2) (4, 0) (2, 5) (3, 7) (6, 4) (5, 7) (7, 5) (7, 8) (8, 7) (8, 8)

MLE 0.016 0.025 0.042 0.067 0.085 0.099 0.128 0.205 0.341 1

Gart 0.015 0.024 0.039 0.062 0.079 0.091 0.116 0.180 0.291 –

Firth 0.015 0.024 0.040 0.064 0.080 0.093 0.118 0.187 0.296 0.455
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Table 2.

Bias of estimators corrected by either Gart’s or Firth’s method, for testing 8 pools of 20 and 8 pools of 5.

p
MLE Gart Firth

𝔼 p % bias RMSE 𝔼 p % bias RMSE 𝔼 p̆ % bias RMSE

0.01 0.0105 4.6 0.0077 0.0100 −0.06 0.0074 0.0100 0.13 0.0074

0.02 0.0210 5.0 0.0115 0.0200 −0.07 0.0108 0.0200 0.15 0.0109

0.03 0.0317 5.5 0.0150 0.0300 −0.08 0.0139 0.0301 0.17 0.0139

0.04 0.0424 6.0 0.0184 0.0400 −0.09 0.0168 0.0401 0.19 0.0168

0.05 0.0533 6.6 0.0219 0.0499 −0.10 0.0196 0.0501 0.22 0.0197

0.07 0.0755 7.8 0.0297 0.0699 −0.14 0.0256 0.0702 0.25 0.0258

0.10 0.1099 9.9 0.0450 0.0998 −0.22 0.0357 0.1003 0.25 0.0359

0.15 0.1715 14.3 0.0927 0.1494 −0.41 0.0554 0.1501 0.09 0.0558

0.20 0.2448 22.4 0.1703 0.1983 −0.85 0.0752 0.1994 −0.30 0.0758

0.25 0.3363 34.5 0.2586 0.2459 −1.64 0.0910 0.2474 −1.05 0.0913

0.30 0.4447 48.2 0.3391 0.2910 −3.00 0.1003 0.2927 −2.42 0.1000
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Table 3.

Mean percentage bias, RMSE, and bias (×104) at p = ψ, for estimators corrected by either Gart’s or Firth’s 

method, for a range of pooled testing procedures.

N mn ψ Gart Firth

Mean
|% bias|

Mean
RMSE

Bias at
p = ψ

Mean
|% bias|

Mean
RMSE

Bias at
p = ψ

500 5100 0.506 0.020 0.0288 −9.81 0.015 0.0289 2.12

500 1050 0.248 0.085 0.0220 −13.04 0.032 0.0222 0.57

500 2025 0.103 0.224 0.0137 −9.80 0.066 0.0139 0.13

500 5010 0.027 0.735 0.0063 −4.81 0.200 0.0065 0.22

500 1005 0.008 2.069 0.0033 −2.46 0.553 0.0034 0.27

1000 2050 0.133 0.122 0.0123 −9.46 0.033 0.0125 −0.10

1000 10010 0.013 0.791 0.0033 −2.52 0.204 0.0034 0.10

1000 5200 0.569 0.012 0.0231 −8.53 0.009 0.0232 1.75

5000 51000 0.687 0.004 0.0135 −6.17 0.003 0.0135 1.21

1000 5100 5010 0.506 0.023 0.0286 −9.81 0.019 0.0287 2.12

1000 2520 5010 0.078 0.251 0.0099 −8.61 0.067 0.0101 −0.20

5000 5500 5050 0.641 0.006 0.0170 −7.09 0.005 0.0171 1.41

5000 25100 5050 0.132 0.076 0.0083 −7.90 0.018 0.0084 −0.33

1000 1020 258 5012 0.180 0.203 0.0219 −15.18 0.024 0.0222 −1.12

1000 1050 2512 504 0.248 0.085 0.0207 −13.12 0.026 0.0209 0.23

1000 5100 1040 254 0.507 0.019 0.0262 −9.74 0.014 0.0263 1.98

5000 10200 2560 5030 0.344 0.032 0.0155 −11.33 0.010 0.0156 0.18

1000 510 1010 2510 5012 0.261 0.199 0.0335 −19.35 0.037 0.0339 −0.46

1000 520 1040 2512 504 0.350 0.065 0.0283 −14.37 0.043 0.0286 3.49

5000 1050 2540 5030 10020 0.248 0.080 0.0187 −13.17 0.019 0.0188 −0.28
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